# Cool Things That One Can Do With Graphical Probabilistic Models 

Marek J. Druzdzel

BayesFusion, LLC<br>marek@bayesfusion.com<br>http://www.bayesfusion.com/

## Overview

- Motivation
- Bayesian probability theory
- Bayesian networks
- Extended family of graphical models
- Hybrid Bayesian networks
- Dynamic Bayesian Networks
- Qualitative Bayesian networks
- Influence diagrams
- Some applications
- BayesFusion, LLC
- Software demo


## Motivation

## Why statistics?

"... in this world nothing can be said to be certain, except death and taxes" --- Benjamin Franklin in a letter to his friend M. Le Roy
(*) The Complete Works of Benjamin Franklin, John Bigelow (ed.), New York and London: G.P. Putnam's Sons, 1887, Vol. 10, page 170

- In other words, "Uncertainty is prominent around us."
- It is an inherent part of all information and all knowledge.
- We need to deal with uncertainty in decision making.


## Why probability theory and statistics?

## "The theory of probabilities is basically only common sense reduced to a calculus."

("... la théorie des probabilités n'est, au fond, que le bon sens réduit au calcul.")
— Pierre-Simon Laplace, "Philosophical Essay on Probabilities" (1814)


## Bayesian Probability Theory

## Joint probability distribution

## Expresses the probability of events

 defined over several random variables

## Joint probability distributions

## Motivation

Bayesian probability theory Bayesian networks Extended family of graphical models Some applications
BayesFusion, LLC


## Joint probability distribution

Joint probability distributions are much more interesting than probability distributions over single variables

## Why?

Given the value of some of the variables in the join probability distribution, we can estimate the probability distributions over the remaining variables.
e.g., we can predict the grade distribution in a university course given the amount of work that we put into the course

BAYESFUSION

## Bayes theorem

An easy to prove theorem, obtained from the definition of conditional probability:
From

$$
P(A \mid B)=P(A, B) / P(B)
$$

and

$$
P(B \mid A)=P(A, B) / P(A)
$$

we have


Posterior (a.k.a. a-posteriori) probability

Prior (a.k.a. a-priori) probability
Bayes theorem gives us a mechanism for changing our opinion in light of new evidence!

## Bayes theorem example

Let the prevalence of syphilis in the population of young people planning to get married in Pennsylvania be 0.001.
Let a (mandatory) test, required for obtaining the marriage license have sensitivity of 0.98 and specificity of 0.95 .
What is the probability that your fiancée, who tested positive for syphilis, has syphilis?

$$
\begin{aligned}
P(S \mid+) & =P(+\mid S) / P(+) P(S)
\end{aligned} \quad \text { (Bayes theorem) }
$$

$$
\mathrm{P}(\mathrm{~S} \mid+)=0.980 .001 / 0.050930 .001
$$



# Imagine a population of 10,000 individuals. 

## Prevalence of 0.001

means that 10 out of the 10,000 will have the disease.
Let us screen them all.


With sensitivity of 98\%, 9.8 of the 10 diseased will be correctly detected.

## With specificity of 95\%, we will have 5\% (of 9,990 ), which is 499.5 false positives.

Now, among all those who tested positive, roughly
9.8/(9.8+499.5) $\approx 2 \%$ will be diseased.

Is it easier to understand :)?


## Bayes theorem and Bayesian statistics

A versatile and powerful theory that seems to solve a variety of problems, originating from an $18^{\text {th }}$ century English mathematician, Rev. Thomas Bayes (http:/len.wikipedia.org/wiki/Thomas Bayes)

| the theory |
| :--- |
| not die would |
| how bayes' rule cracked |
| hunted down russian |
| submarines \& emerged |
| triumphant from two |
| centuries of controversy |
| sharon bertsch mcgrayne |

Bayes Theory is so "hot" that a lightly written book "The Theory That Would Not Die," published in 2011, has become a bestseller

Recommended video:
http://www.youtube.com/watch?v=80D6eBkjF9o

## Bayesian modeling is reliable and it solves hard problems.

It can use both, data and expert knowledge.

## What is the relation of Bayesian statistics to classical statistics?

What is


Classical statisticians: "We have no clue ©. Probability is a limiting frequency. A nuclear war is not a repetitive process."

Bayesians: "0.24 © . Probability is a measure of belief"

## What is the relation of Bayesian statistics to classical statistics?

- Bayesians: "Probability is a measure of belief" (as opposed to "limiting frequency"), so it is subjective!
- Classical statisticians accuse Bayesians of "hocus pocus" with the prior distributions ("How do you know them?").
- Bayesian statistics comes with so called "limit theorems," which say that no matter what distribution you choose for your prior, you will eventually converge to the true distribution if you observe enough evidence.
- Of course, there is nothing wrong with starting with "the right distribution" in the beginning (In other words, it would be unwise to ignore available statistics).
- But even if you don't have them, you can still do useful work, even if you have to just guess the priors.

BAYESFUSION

## Bayesian Networks

## Probabilistic knowledge representations

- A probabilistic (Bayesian) model encodes the joint probability distribution over its variables.
- Knowledge of the joint probability distribution is sufficient to derive any marginal and conditional probability over the model's variables (and anything else we could possibly be interested in!).


## Probability trees

The simplest and quite natural graphical representation of a joint probability distribution over discrete variables

$P($ disease present $\wedge$ test positive) $=P(D \cap+)=0.00098$
$P($ disease present $\wedge$ test negative $)=P(D \cap+)=0.00002$ $P($ disease absent $\wedge$ test positive $)=P(\sim D \cap+)=0.04995$ $P($ disease absent $\wedge$ test negative) $=P(\sim D \cap+)=0.94905$

BAYESFUSION

## Computation in probability trees

We can calculate any marginal or conditional probability distribution from the joint probability distribution encoded in the tree.


What is the probability of the disease present?

$$
P(D)=0.00098+0.00002=0.001
$$

## Computation in probability trees

The simplest and quite natural graphical representation of a joint probability distribution over discrete variables


What is the probability of the disease present given a positive test result? Observation of a positive test result makes some of the branches of the tree impossible. What we need to do is just renormalize the remaining, possible (i.e., those that are compatible with the evidence) branches!
$P(D \mid+)=0.00098 /(0.00098+0.04995) \approx 0.01924$

BAYESFUSION

## What is wrong with probability trees?

Trees grow exponentially with the number of variables


For n binary variables, we will have $2^{\mathrm{n}}$ branches.
When $n=10$, the total number of branches is 1,024
When $n=11$, it is 2,048
When $\mathrm{n}=\mathbf{2 0}$, it is $\mathbf{1 , 0 4 8 , 5 7 6}$ (which is a lot () )

# Use independences among variables in the joint probability distribution to reduce the number of parameters in its representation! 

Due to seminal work on probabilistic independence by A. Philip Dawid and Judea Pearl


BAYESFUSION

## All brilliant ideas are obvious (once we have them ())



## Factorability of the joint probability distribution

Every joint probability distribution can be factorized, i.e., rewritten as a product of prior and conditional probability distributions of each of the model's variables

$$
\begin{array}{r}
f\left(X_{1}, X_{2}, \ldots, X_{n}\right)=f\left(X_{1} \mid X_{2}, X_{3}, \ldots, X_{n}\right) f\left(X_{2} \mid X_{3}, \ldots, X_{n}\right) \ldots \\
f\left(X_{n-2} \mid X_{n-1}, X_{n}\right) f\left(X_{n-1} \mid X_{n}\right) f\left(X_{n}\right)
\end{array}
$$

e.g., four variables ( $a, b, c, d$ ), we have:

$$
\begin{aligned}
& P(A, B, C, D)=P(A \mid B, C, D) P(B \mid C, D) P(C \mid D) P(D) \\
& P(A, B, C, D)=P(A \mid B, C, D) P(B \mid C, D) P(D \mid C) P(C)
\end{aligned}
$$

$$
P(A, B, C, D)=P(B \mid A, C, D) P(D \mid A, C) P(A \mid C) P(C)
$$

...

There are n ! different directed graphs corresponding to various ways of factorizing a joint probability distribution over $\mathbf{n}$ variables.

For $n=4$, we have $4!=24$ different factorizations.

## Factorability of the joint probability distribution

- Any factorization can be simplified if we consider independencies among variables.
- Those factorizations that become the simplest are better than others in terms of efficiency of representation.
e.g., suppose we know that $B \perp D|C, D \perp A| C$, and $A \perp C$

We can simplify

$$
P(A, B, C, D)=P(B \mid A, C, D) P(D \mid A, C) P(A \mid C) P(C)
$$

into

$$
P(A, B, C, D)=P(B \mid A, C) P(D \mid C) P(A) P(C)
$$

BAYESFUSION

## Bayesian networks

- This underlies the very idea of Bayesian networks.
- We draw a directed graph with arc from the conditioning variables to the variables in the factorization.

$$
\begin{aligned}
& P(A, B, C, D)=P(A \mid B, C, D) P(B \mid C, D) P(C \mid D) P(D) \\
& P(A, B, C, D)=P(A \mid B, C, D) P(B \mid C, D) P(D \mid C) P(C)
\end{aligned}
$$

:.

$$
P(A, B, C, D)=P(B \mid A, C, D) P(D \mid A, C) P(A \mid C) F
$$

...


## Probability trees and Bayesian networks

probability tree


Bayesian network


The two representations are equivalent But, when there are independences in the domain, Bayesian networks are much, much more efficient!

BAYESFUSION

## Bayesian networks: An alternative view (quite consistent with the theoretical view, it turns out!

The graphical part of a Bayesian network is a picture of causal relations among the model variables.

[Oniśko et al.] 70 variables, 123 arcs, 2,415 independences, 2,139 numerical parameters (instead of over $\mathbf{2 0}^{70} \approx 10^{21}$ !)

## Complexity of Bayesian networks does not seem to be a show stopper in practice


$2^{2127} \approx 10^{632}$
$10^{82}$ is believed to be the number of atoms in the observable universe

[Przytula et al.] 2,127 variables, 3,595 arcs, 2,261,001 independences, 12,351 numerical parameters (instead of $\mathbf{2}^{2,127} \approx 10^{632}$ !)

## Bayesian networks

A Bayesian network [Pearl 1988] is an acyclic directed graph consisting of:


- The qualitative part, encoding a domain's variables (nodes) and the probabilistic (usually causal) influences among them (arcs).
- The quantitative part, encoding the joint probability distribution over these variables.


## Bayesian networks: Numerical parameters

| - | a1_below_20 | 0.0416 |
| :---: | :---: | :---: |
|  | a2_20_29 | 0.2012 |
|  | a3_29_45 | 0.3079 |
|  | a4_45_60 | 0.2989 |
|  | a5 60 up | 0.1504 |

Prior probability distribution tables for nodes without predecessors (Age)


Please note that each absence of an arc (i.e., each independence modeled) is means one less dimension in the corresponding conditional probability table!

Conditional probability distributions tables for nodes with predecessors (HPV, Pap test, Cervix)

| Age | a1_below_20 | a2_20_29 | a3_29_45 | a4_45_60 | a5_60_up |
| :--- | ---: | ---: | ---: | ---: | ---: |
| - | 0.8652 | 0.8387 | 0.7904 | 0.8055 | 0.8851 |
| NA | 0.069 | 0.0901 | 0.1782 | 0.1765 | 0.1012 |
| Negative | 0.0613 | 0.0667 | 0.0282 | 0.0142 | 0.0082 |
|  |  | 0.0045 | 0.0045 | 0.0032 | 0.0038 |

## Inference in Bayesian networks: Bayesian updating

The most important type of reasoning in Bayesian networks is updating the probability of a hypothesis (e.g., a diagnosis) given new evidence (e.g., medical findings, test results).


P(CxCa | HPV=positive, HSIL=yes)

Example:
What is the probability of invasive cervical cancer in a (female) patient with high grade dysplasia with a history of HPV infection?

Generally, the more sparse the structure of your network, the fewer parameters, the faster inference in the Bayesian network.

## Inference in Bayesian networks: Changes in structure

Changes in structure is an economic/econometric terms used for predicting the effects of manipulation of a modeled system


What is the probability of invasive cervical cancer in a (female) patient protected from an HPV infection by a (perfect) vaccine?

> We can calculate the effects of changes in structure only if we have a causal model of the system

P(CxCa | HPV=negative, HSIL=yes)

## Extended Family of Bayesian Graphical Models

## Equation-based systems and graphical models

```
classsize = (nstud * cload) I (nfac * tload)
facsal = (oinc + tuition * nstud) I (nfac * (1 + overh))
stratio = nstud I nfac
```

$\square$
Core equations
cload $=15$
tload $=6$
nstud = 22102
$\longleftarrow \quad$ Equations for exogenous variables
nfac $=3006$
oinc $=30000000$
tuition $=12000$
overh $=0.48$

Together they determine the structure of the model

Explication of the asymmetries due to Herb Simon (early 1950s)


[^0]
## Spreadsheet models



- They could also be viewed as graphs
- Graphs would show causal dependences among cells (variables)
- Of course, for any practical spreadsheet, we would essentially get a spaghetti of connections :)
- Systems of simultaneous equations and spreadsheet models are not the best we can do
- Directed graphs seem to be better as a user interface!


## Visual spreadsheets



- Fix almost everything that has been wrong with spreadsheets
- Great, but I believe that they could still be improved upon!

My favorite is Analytica (http://www.Iumina.com/)

## Example of a simultaneous structural equationbased model turned into a Bayesian network

A model of heating and cooling of buildings.
Two core equations, continuous variables/distributions.

Equations relating temperatures before and after the damper:

$$
\mathrm{T}_{\mathrm{ma}}=\mathrm{T}_{\mathrm{oa}}{ }^{*} \mathbf{u}_{\mathrm{d}}+\mathrm{T}_{\mathrm{ra}} *\left(1-\mathbf{u}_{\mathrm{d}}\right)
$$

If there is only cooling ( $\mathrm{u}_{\mathrm{hc}}=0$ )


## Temporal reasoning: Dynamic Bayesian networks

Dynamic Bayesian networks allow for tracking development of a system over time and support decision making in complex environments, where not only the final effect counts but also the system's trajectory.


## Qualitative Bayesian networks

Qualitative interface to Bayesian networks require few numerical probabilities and allow for rapid model building and analysis. They are great for group decision making sessions.
s.


Higher Speed Requirements


## Decision Making: Influence Diagrams



## Learning/Data Mining

There exist algorithms with a capability to analyze data, discover causal patterns in them, and build models based on these data.


BAYESFUSION

## Some Applications

## Diagnosis, prediction, prognosis

- This is a distinction based on the causal understanding of the World and relates to the direction of reasoning
- Finding out what happened is typically diagnosis
- Calculating what will or may happen is prediction/prognosis



## Probability theory does not make this distinction: Bayesian updating

We can compute the impact of observations within a model, whether it goes forward or backward in time


Observation of severe headaches

O Metastatic Cancer present21\% absent 79\%


## Diagnosis of liver disorders (the HEPAR II model) fin figiticica modes


[Oniśko et al.] 70 variables; 2,139 numerical parameters (instead of over $\mathbf{2}^{\mathbf{7 0}} \approx 10^{21}$ !)

# Diagnosis and prognosis of cervical cancer (Pittsburgh Cervical Cancer Screening Model) 

led family of graphical models

[Oniśko et al.] 18 variables; 295,163 numerical parameters (instead of over 1013!)

## Diagnosis of Diesel locomotives

Motivation
Bayesian probability theory Bayesian networks
Extended family of graphical models
Some applications
BayesFusion, LLC

[Przytula et al.] 2,127 variables; 12,351 numerical parameters (instead of $\mathbf{2 1 2}^{2127!}$ )

## Symptomate: An intelligent medical consultant



## DxMate

English -

Available conditions

## The first open tool for differential diagnostics

Take part in an innovative project created by doctors from all over the world.

Join us

## Other diagnostic applications

- Machine prognosis (in the context of machine maintenance)
- Diagnosis of database servers (Oracle)
- Diagnosis of airplanes (Boeing)
- Diagnosis of IC "baking" devices (Intel)


## Modeling engineering and financial processes pilanaine

## Continuous Bayesian networks allow for modeling equationbased systems.

## Diagnostic inference in such models is hard but we can discretize the variables for the purpose of inference.





m_flow_ma*sp_heat_air*(Tsa - Tma) $=$ mdot_cw**p_heat_water* $\left(T_{-} c w_{-} o u t-T_{-} c w_{-}\right.$in $)$
m_flow_ma*sp_heat_air ${ }^{*}(T s a-T m a)=m d o t \_h w^{*} s p \_h e a t \_w a t e r^{*}\left(T \_h w \_o u t-\right.$

## Classification


http://guides.wikinut.com/img/23pyri.8.frh-6iy/Classification-of-Organisms
The problem of identifying to which set of categories (sub-populations) a new observation belongs on the basis of a training set of data containing observations (or instances) whose category membership is known.

## Detection

Extended family of graphical models

- Some applications

BayesFusion, LLC
-Spam detection -Fraud detection
-Detection of conflicting medicine


## Recognition

- Handwriting recognition
- Face recognition
- Optical character recognition
- Pattern recognition
- Speech recognition

http://www.stanford.edu/class/cs224s/


| U Untitled - Notepad |
| :--- |
| $\begin{array}{l}\text { Feels Edt Format waw Hel } \\ \text { Hand writing recognition }\end{array}$ |

Motivation
Bayesian probability theory
Bayesian networks
Extended family of graphical models

- Some applications

BayesFusion, LLC

Customers who bought The Thing [1982] also bought:

## An effective way to enhance customer shopping experience and increase sales



## BayesFusion, LLC

## The Origins: <br> Decision Systems Laboratory University of Pittsburgh



## BayesFusion, LLC



Research:
Pittsburgh, PA, USA \& Bialystok, Poland

Partners: Tomek Sowinski \& Marek Druzdzel

- Self-funded, free and flexible in decision making.
- The primary source of our income is software sales ...
- ... however, we also offer custom software development, training, scientific consulting, and problem solving.

Development:
Bialystok, Poland

## The Architecture of GeNIe and SMILE ${ }^{\text {© }}$

Developed between 1995 and 2015 Made available to the community in 1997 Reliable, fast, thousands of users


## New Products

## BayesBox:

## Fully customizable interactive cloud model repository

Extended family of graphical models
Some applications


| Carrier $₹$ | 4:43 PM | -4 |
| :---: | :---: | :---: |
|  | Current case: Gregory H. Irvin |  |
| <Heparll | Targets | 三 |
| Q |  |  |
| PBC:present |  |  |
| Hepatic steatosis:present $94 \%$ |  |  |
| Cirrhosis:decompensate |  |  |
| Carcinoma:present |  |  |
| Chronic hepatitis:active |  |  |
| Cirrhosis:compensate |  |  |
| Toxic hepatitis:present |  |  |
| Hepatic fibrosis:present |  |  |
| $\underset{\text { Targets }}{(1)}$ |  | $\square_{\text {nses }}$ |



Motivation
Bayesian probability theory Bayesian networks

BayesMobile: Diagnostic interface on portable devices

## The rest

BAYESFUSION
Probabilistic Graphical Models

## Thank you for your attention!



For technical inquiries please visit http://support.bayesfusion.com/forum/


[^0]:    BAYESFUSION

